

November 21, 2025

Liza Reed
Niskanen Center
1201 New York Ave. NW, Suite 200B
Washington, D.C. 20005
614-578-5328 • lreed@niskanencenter.org

U.S. Department of Energy
1000 Independence Avenue, SW
Washington, D.C. 20585
SpeedtoPowerRFI@hq.doe.gov

Submitted electronically via email

Re: RFI Response – Accelerating Speed to Power

The authors of this comment from the Niskanen Center (“Niskanen”) and the Center for Strategic and International Studies (“CSIS”) appreciate the opportunity to provide input on the U.S. Department of Energy’s (“DOE”) Request for Information on Accelerating Speed to Power (the “RFI”). Niskanen is a nonpartisan 501(c)(3) think tank and advocacy organization committed to robust markets and evidence-based policy. CSIS is a globally respected bipartisan policy institution focused on advancing practical solutions to the world’s biggest challenges, including developing energy infrastructure. The authors commend DOE’s leadership and propose the following recommendations for how the agency can leverage its programs and authorities to accelerate the buildout of the grid to increase speed to power for data centers.

Introduction

Speed has become the defining metric in America’s ability to expand and modernize the electric grid. New transmission often takes 10 to 12 years to complete due to the complexities of planning and permitting, while new generation requires 3 to 4 years from interconnection request to commercial operation.¹ Meanwhile, emerging data-center loads are estimated to materialize on 2- to 3-year timelines. This growing mismatch between how fast demand is arriving and how long it takes to add capacity to the grid threatens U.S. reliability, affordability, and competitiveness.

As this Administration recognizes, expanding the grid to match the pace of domestic innovation will require optimizing existing infrastructure while new greenfield development advances

¹ [2035 and Beyond: The Report](#), Grid Lab (April 2024); [Queued Up: 2024 Edition](#), Lawrence Berkeley National Laboratory (April 2024).

through multi-year permitting and planning processes.² We commend DOE for its sustained focus on expanding and modernizing our grid, and encourage its continued reliance on maintaining programs such as the Transmission Facilitation Program (TFP) and Grid Resilience and Innovation Partnerships (GRIP) program, and suggest packaging these with other DOE authorities to provide predictable pathways to complete projects faster and at lower cost. We urge DOE to measure success over the next year through defined near-term outcomes, such as conditions on loans or grants, partnerships with state entities, and agreements with private companies, to identify what works.

We offer this response to the questions outlined by DOE in categories 3 and 6 of the RFI, divided into the following recommendations:

1. Support reconductoring of existing transmission lines to relieve congestion and increase available capacity;
2. Promote upgrades to existing back-to-back high voltage direct current (HVDC) transmission seams to increase transfer capacity across interconnections;
3. Encourage flexibility measures that reduce grid strain from large load customers; and
4. Assist states in developing large-scale generation and storage resources to meet rising demand.

Finally, we identify several opportunities for DOE to optimize its existing authorities and recommend areas where additional clarification or enhancements from Congress could further accelerate progress.

I. Comments

A. Support reconductoring of existing transmission lines to relieve congestion and increase available capacity.

Lawrence Berkeley National Laboratory (LBNL) estimates data centers could add between 74 and 132 GW of new demand on the grid by 2028.³ When pursued systematically, reconductoring has been estimated to be capable of quadrupling grid capacity by 2035 using existing rights-of-way (ROW) and avoiding the delays inherent to permitting major new transmission projects.⁴ Hyperscalers have already begun to forge partnerships with manufacturers to advance this technology—signaling a readiness among large consumers to help retool the grid and drive deployment.⁵

² [America's AI Action Plan](#), The White House, pp.18 (July 2025).

³ [United States Data Center Energy Usage Report](#), Lawrence Berkeley National Laboratory, pp. 8 (December 2024).

⁴ [Supporting Advanced Conductor Deployment: Barriers and Policy Solutions](#), Mike O'Boyle, Casey Baker, and Michelle Solomon, Energy Innovation and GridLab, pp. iii (April 9, 2024).

⁵ [We're partnering with CTC Global to increase and improve U.S. electrical grid capacity](#), Google (June 17, 2025).

Recommendation: DOE should engage high-growth areas to accelerate reconductoring (3.a.v).

The Electric Power Research Institute has identified ten states projected to experience the most significant growth in electricity demand from data centers (Table 1).⁶

Table 1: Reconductoring in Top 10 High-Growth States and Associated Regions

Region	State	Relevant Measures	Permitting Carveouts?	Explanation
West	California	SB 1006	Yes	No Certificate of Public Convenience and Necessity (CPCN) or Permit to Construct required for transmission upgrades within existing ROW, or for adding conductors on existing structures.
Non-RTO West	Arizona	HB 2003	Yes	Conductor replacements largely exempted from environmental review.
	Oregon	HB 3681 HB3336	Yes	Reconductoring projects for lines 230kV+ are exempted from review.
	Washington	SSB 5165	Yes	Reconductoring projects exempt from environmental review up to 115 kV within existing ROW.
ERCOT	Texas	None	Yes	No CPCN required for bundling conductors or reconductoring absent new ROW; landowner consent required for added ROW.
PJM	Pennsylvania	None	Yes	Reconductoring in existing ROW only requires a letter of notification, not an application for authorization.
	Virginia	SB1006 H.B. 862 H.B. 1822	Yes	No CPCN required for reconductoring-only projects.
	Illinois	None	Yes	No CPCN required to replace/upgrade existing transmission.
MISO	Iowa	None	Yes	Abbreviated authorization process for reconductoring distribution-level lines only.
Non-RTO Southeast	Georgia ⁷	None	No	N/A

⁶ [Powering Intelligence: Analyzing Artificial Intelligence and Data Center Energy Consumption](#), EPRI, pp. 13 tbl. 2 (May 28, 2024).

⁷ Note: Georgia does not have state-wide permitting or CPCN requirements for transmission facilities, regardless of voltage or location. See [Ga. Code Ann. § 22-3-160.1\(d\)\(1\)](#).

We reviewed reconductoring regulations across these states, and found that the majority have schemes to fast-track permitting for reconductoring projects in existing ROW. Yet, the mere existence of fast-track permitting pathways has not always translated into implementation. DOE should use its convening power to conduct targeted roundtables in the states listed in Table 1, or within larger regional hotspots, to discuss how to better align incentives and cost structures to make reconductoring a more viable investment. Roundtables could consist of data center developers, transmission owners and planners, state energy offices, and public utility commissioners. DOE can issue a request for proposal (RFP) under the Transmission Acceleration Grants (TAG) program⁸ to assist states in the planning, analysis, or permit streamlining efforts.

Recommendation: DOE should leverage the expertise of the national labs to provide technical assistance for power flow modelling in support of project planning and design (3.e).

Idaho National Labs previously identified roughly 20 percent of existing circuit miles in the U.S. as candidates for reconductoring, and DOE could also request an estimate of how many miles are immediate candidates for reconductoring in each of these states based on length and voltage as additional information to help prioritize engagement.⁹ DOE can leverage the national labs ecosystem to pair financial support with expanded technical assistance to assist utilities and developers in conducting power flow modeling to assess the congestion-relief and capacity benefits of specific projects.

Recommendation: DOE should issue a third round of GRIP grants, and utilize loans, to support investor-owned utilities (3.a.i, 3.b).

For investor-owned utilities, federal support can help offset the structural disincentive to reconduct or embedded in traditional cost-of-service regulation. Access to lower-cost financing and/or grants could help pull forward reconductoring projects that might otherwise be deferred, particularly as wildlife mitigation and other safety investments continue to put upward pressure on rates. DOE should open a third round of GRIP grants for projects that improve the efficiency of the grid, and should also consider creating a fast track re-consideration process for any recently cancelled projects that are already proposed to use, or may be amended to incorporate, high-performance conductors. This process would allow projects to establish how they can support resilient power supply for AI growth. Similarly, DOE should assess and finalize conditional loan commitments for reconductoring projects in the Title 17 Energy Infrastructure Reinvestment Program that can support speed to power goals, as they recently successfully did with American Electric Power.¹⁰ Reconductoring is also well aligned with the intent of DOE's

⁸ [Transmission Acceleration Grants](#), Department of Energy (November 19, 2025).

⁹ [Advanced Conductor Scan Report](#), Idaho National Laboratory, pp. 73-87 (September 2024); [Advanced Conductor Scan Report Addendum State-Level Maps of Reconductoring Potential](#), Idaho National Laboratory (August 2025).

¹⁰ [Energy Department Closes Loan Guarantee to Strengthen U.S. Grid Reliability](#), Department of Energy (October 16, 2025).

Energy Dominance Financing (EDF) program under Title XVII within the Energy Dominance Financing Office, as contemplated in the Interim Final Rule amending 10 C.F.R. Part 609, to enable “operating Energy Infrastructure to increase capacity or output.”¹¹ Projects that alleviate congestion cost-efficiently could help satisfy the condition that utilities pass the financial benefit of EDF projects onto customers.¹²

Recommendation: DOE should increase the GRIP set-aside for small utilities and hire a dedicated contracting officer to work with municipal or cooperative utilities (3.a.i, 3.b).

Several states that are anticipating significant load growth have a robust public power footprint. Municipal and cooperative (co-op) utilities often operate aging lines that may be ideal candidates for reconductoring. However, these entities typically face heavy competition for grid funding in federal programs. GRIP includes a minimum set-aside of “not less than 30 percent” of funding for entities that sell 4 million MWh of electricity per year.¹³ DOE should expand GRIP’s existing small-utility set-aside and execute on this by leveraging its existing strong relationships with public power entities through the Power Marketing Agencies (PMAs). DOE should award and distribute funding through the PMAs, using contracting officers who have experience working with the public power utilities in their region to provide targeted grants to public power entities nationwide. This would create the internal conditions to support speed to power in the authorization and disbursement of federal funding.

Recommendation: DOE should promote and use its CatEx for reconductoring as well as encourage states to adopt similar procedures (3.a.iv).

DOE should use and promote the existing National Environmental Policy Act (NEPA) categorial exclusion (CatEx), finalized in early 2024, to support faster permitting for advanced conductors wherever possible to accelerate project timelines.¹⁴ In parallel, DOE should encourage states to develop comparable streamlined review pathways for reconductoring—whether by adopting federally-aligned state-level CatExs for work within existing ROW, or modernizing state environmental review practices to reflect the low-impact nature of reconductoring. DOE could support these efforts through the TAG program.

Recommendation: DOE should open a targeted TFP round for PMA reconductoring (3.b).

DOE should work with the PMAs to issue a TFP RFP, evaluated on a rolling basis, welcoming applications from PMAs or private entities, for projects that would increase capacity on lines owned or managed by PMAs. DOE’s oversight of these entities could speed decision-making and environmental review, particularly given the CatEx for reconductoring.

¹¹ [Energy Dominance Financing Amendments](#), U.S. Department of Energy, 90 FR 48705 (October 28, 2025).

¹² *Id.* at § 48707.

¹³ [42 U.S. Code § 18711\(c\)\(5\)](#).

¹⁴ [10 C.F.R. Pt. 1021, Subpt. D, App. B, B4.13](#).

B. Promote upgrades to existing back-to-back HVDC transmission seams to increase transfer capability across interconnections.

In 2024, the North American Electric Reliability Corporation (NERC) noted that the U.S. grid will require the addition of 35 GW of transfer capacity to maintain reliability.¹⁵ DOE can kickstart this capacity expansion by focusing on upgrading existing ‘back-to-back’ HVDC seams that exist along the boundaries of the Western, Eastern, and Electric Reliability Council of Texas (ERCOT) Interconnections (herein referred to as “B2B seams”) to achieve significant transfer capacity increases. There are 9 B2B seams that link the various interconnects within the contiguous U.S. (Table 2).

Table 2: Characteristics of existing B2B seams in the contiguous U.S.

Location	Interconnects Bridged	Owner(s) ¹⁶	Ownership Type(s) ¹⁷
Miles City, MT	Eastern/Western	Western Area Power Administration (WAPA), Basin Electric Power Cooperative	Federal, co-op
Rapid City, SD	Eastern/Western	Basin Electric Power Cooperative, Black Hills Power Inc.	Co-op, investor-owned
Stegall, NE	Eastern/Western	Tri-State Generation & Transmission Assn. Inc.	Co-op
Sidney, NE	Eastern/Western	WAPA	Federal
Lamar, CO	Eastern/Western	Public Service Company of Colorado	Investor-owned
Clovis, NM	Eastern/Western	Public Service Company of New Mexico	Investor-owned
Artesia, NM	Eastern/Western	El Paso Electric Company/Public Service Company of New Mexico	Investor-owned
Oklahoma, TX	ERCOT/Eastern	Public Service Company of Oklahoma, AEP Texas	Investor-owned
Titus County, TX	ERCOT/Eastern	Southern Electric Power Company, AEP Texas, Oncor, CenterPoint	Investor-owned

¹⁵ [Interregional Transfer Capacity Study Final Report](#), North American Electric Reliability Corporation, pp. xiii (November 2024).

¹⁶ Note: Public Service Company of Oklahoma and Southern Electric Power Company are AEP subsidiaries, while Public Service Company of Colorado is a subsidiary of Xcel Energy.

¹⁷ Note: Some seams are co-owned by multiple entities, each with a percentage “share” of ownership.

Taken together, these B2B seams currently afford roughly 2 GW of transfer capacity,¹⁸ well short of NERC's suggested transfer capacity additions. All of the listed B2B seams are at least 20 years old (significantly older in many cases), and they all use outdated line-commutated converters, making them prime for upgrades that employ modern voltage source converters (VSC) and expand their overall transmission capacity. For example, one national lab study notes that upgrades could result in 6.7 GW of additional transfer capacity between the Eastern and Western Interconnections alone.¹⁹ DOE could play a key role in coordinating and providing funding for such upgrades, in part by soliciting proposal requests from seam owners to offset the rate-payer burden of paying for such upgrades. Several existing mechanisms could be applicable, depending on ownership type, as noted below:

Recommendation: DOE should leverage TFP or GRIP to fund upgrades to investor-owned seams (3.b).

TFP could fund upgrades for these owners, since projects that seek to increase the capacity of an existing line are eligible.²⁰ Capacity contracts or loan structures built into TFP would be best suited to this suite of potential projects. The DOE's GRIP Smart Grid Grants²¹ and the Grid Innovation Program²² could also be applied to boost B2B seam capacity, of which approximately \$2 billion are still available.

Recommendation: DOE should coordinate with RUS to fund upgrades to co-op-owned seams (3.g).

While not a DOE-funded program, DOE could collaborate with the U.S. Department of Agriculture Rural Utility Service (RUS) Electric Programs,²³ which has a roughly \$5.5 billion budget, to fund upgrades to co-op-owned assets through low-cost, long tenure loans.

Recommendation: DOE should leverage TIP to fund upgrades to federally-owned seams (3.b).

Upgrades made directly by WAPA to federally-owned infrastructure could take advantage of WAPA's Transmission Infrastructure Program (TIP)²⁴, under which WAPA has both borrowing and spending authorities, of which the latter would likely be easier for WAPA to administer. If funds are used for the purpose of upgrading B2B seams, allocations for additional staff time

¹⁸ [Interconnection Seams Study Overview Presentation](#), Brinkman et al., National Renewable Energy Laboratory, pp. 15 (October 2020); [ERCOT Interconnection Study for 2023 Biennial Report](#), Public Utility Commission of Texas, pp. 2 (October 2022).

¹⁹ [The Value of Increased HVDC Capacity Between Eastern and Western U.S. Grids: The Interconnections Seam Study](#), Bloom et al., National Renewable Energy Laboratory, pp 5. (October 2020).

²⁰ [Transmission Facilitation Program](#), U.S. Department of Energy (n.d.).

²¹ [Smart Grid Grants](#), U.S. Department of Energy (n.d.).

²² [Grid Innovation Program](#), U.S. Department of Energy (n.d.).

²³ [Electric Programs](#), U.S. Department of Agriculture (n.d.).

²⁴ [Transmission Infrastructure Program](#), Western Area Power Administration (n.d.).

should be considered in the package. Currently, roughly \$3.25 billion in WAPA TIP funds remain unspent.

Recommendation: DOE should consider funding to address the supply chain constraints associated with upgrading the seams (3.a.vi).

In all proposals, DOE should request that respondents highlight any supply chain constraints associated with the proposed upgrade. Particularly, we expect that availability and lead-time for VSCs will be one of the largest limiting factors. DOE could consider a parallel funding framework for a public-private partnership (3P) with VSC manufacturers to further support B2B seam upgrades if this proves to be the case. When coupled, funding for factories and capacity upgrades could bring vital economic opportunities to the Plains region, where the vast majority of seams are located.

C. Encourage flexibility measures that reduce grid strain from large load customers.

Flexibility could be a powerful tool to reduce grid strain from large load customers, thereby minimizing costly infrastructure investments and accelerating speed to power. Despite interest from both industry and investors, operationalizing large load flexibility remains limited due to regulatory and market design barriers and operational and technical coordination challenges.

Most direct levers for operationalizing and incentivizing large load flexibility lie with state and local regulators, public utility commissions (PUCs), utilities, and other regional stakeholders; While DOE has already taken a valuable first step by elevating²⁵ the issue of large load interconnection to the Federal Energy Regulatory Commission (FERC), it can further leverage its strong coordinating power and available funding under existing programs and authorities to help create enabling conditions that encourage, support, and assist in accelerating the adoption of large-load flexibility for faster data center interconnection. This includes recognizing that flexibility may be provided either within the facility boundary or through contracted resources outside the fence, so long as the service is measurable and verifiable.

Recommendation: DOE should encourage flexibility through federal procurement (3.c.i, 3.g).

The federal government owns thousands of data centers and spent \$16.5 billion on cloud computing in 2023, projected to exceed \$30 billion by 2028. Federal procurement can be an effective tool to leverage this purchasing power to promote change by encouraging market adoption of new technologies and standards.

²⁵ [403 Large Loads Letter](#), U.S. Department of Energy (October 23, 2025).

The government already has a Federal Data Center Optimization Initiative that sets requirements for how agencies manage, report on, and optimize federal data centers. This could be expanded to include flexibility objectives, for example by encouraging cloud contracts to prefer data centers with flexibility capabilities. DOE could also initiate a study into whether the Federal Acquisition Regulation (FAR) could be an effective mechanism to help accelerate broader commercial data center adoption of flexible operations. For example, a FAR clause could state that all federal cloud compute contracts require vendors to participate in flexibility programs, whether through on-site generation or shiftable load. Consideration would need to be given to assess the cost of compliance for agencies.

Recommendation: DOE should provide technical assistance to utilities and grid operators on tariff design and management of interruptible load through existing programs (3.a.ii, 3.b).

DOE has existing programs that can be leveraged to provide technical assistance to utilities and grid operators. Enabling and incentivizing flexible large load customer interconnections can be complex from both technical and regulatory standpoints. Many jurisdictions lack examples of how flexible large-load profiles can be represented in interconnection and transmission-planning studies. Technical assistance can provide guidance on tariff design and help grid operators learn how to manage large interruptible loads.

- The Utility and Grid Operator Technical Assistance program²⁶ is provided through several national labs; through the Rolling Technical Assistance track of the program, utilities and grid operators can receive up to one hundred hours of subject matter expertise from DOE national labs.
- The State Technical Assistance Program²⁷ is also provided by DOE through national labs. This program can be leveraged to provide PUCs and state energy offices assistance in developing innovative tariffs and regulatory strategies to enable data center flexibility. Incorporating large-load flexibility into these planning activities would quantify how much existing capacity is available for use before higher-cost upgrades are required.
- The Grid Deployment Office also directly provides technical assistance²⁸ to utilities, regional transmission organizations, and independent system operators in complying with FERC Orders 1920, 1920-A, and 1920-B. In some instances, this could encompass technical assistance on large-load flexibility. For example, by better understanding how large flexible loads could affect grid capacity and investment requirements.

²⁶ [Utility and Grid Operator Technical Assistance](#), National Renewable Energy Laboratory (n.d.).

²⁷ [State Technical Assistance Program](#), Lawrence Berkeley National Laboratory (n.d.).

²⁸ [Grid Deployment Office Expands Utility-Specific Long-Term Transmission Planning Technical Assistance Offerings](#), U.S. Department of Energy (n.d.).

Recommendation: DOE should offer model guidance to utilities and grid operators on managing large load flexibility (3.e).

DOE could expand technical assistance offerings to promote wider and faster adoption of innovative rate design and regulatory enablers of large load flexibility, including by synthesizing best practices and by designing programs specifically focused on promoting speed to power via customer flexibility. For example, DOE could collaborate with relevant stakeholders to develop model guidance for incorporating large-load flexibility into interconnection processes. A short model guidance document on ‘large-load flexibility for faster interconnection’ would give utilities and PUCs a common starting point for proceedings.

Recommendation: DOE should work with industry to collect data, establish standards, and promote transparency around data sharing (3.i).

An important challenge in both national and subnational large-load interconnection planning is a lack of data. Examples of key knowledge gaps include data center utilization rates, on-site and backup generation capacities, and operational capabilities for spatial and temporal load shifting. Since large-load flexibility is currently largely theoretical, save for one-off pilot projects, this information would inform planning processes by bringing higher resolution to the real potential for data centers to participate in interruptible load in exchange. DOE and the national labs could help collect and analyze this data while working with industry, utilities, and other stakeholders to establish voluntary standards for data sharing. For example, promoting a common data-sharing template would alleviate operators from developing site-specific visibility requirements for each data center.

Recommendation: DOE should leverage GRIP, TAG, and the Distributed Energy Systems Demonstration Program to incentivize large load flexibility (3.a.i, 3.b).

DOE has several existing programs that could be leveraged to provide funding support to help incentivize large-load flexibility for faster speed to power:

- Using GRIP, priority could be given to projects that pair needed distribution or transmission upgrades with a contracted flexibility commitment from the large-load customer.
- TAG funds from the DOE Grid Deployment Office support “capacity building and local and regional transmission planning or siting and permitting process reforms.”²⁹ Some elements of local and regional efforts to accelerate speed to power through large load flexibility may fall under siting and permitting process reforms. This would help states and local entities modernize their processes to recognize flexible large loads.

²⁹ [Transmission Acceleration Grants Program](#), U.S. Department of Energy (n.d.).

- The Distributed Energy Systems Demonstration Program is intended to show how distributed assets can be used to improve grid reliability and resilience.³⁰ Data centers and other large-load customers that have grid-connectable, on-demand, on-site power generation and storage could fall under this program. Coordinating on-site generation with grid operations can be technically challenging and more research, experimentation, and demonstration is needed to unlock this capability at scale.

D. Assist states in developing large-scale generation and storage resources to meet rising demand.

According to the Edison Electric Institute, investor-owned utilities are poised to invest an estimated \$1.1 trillion over the next five years to enhance and expand the grid, compared to \$1.3 trillion deployed over the past ten years.³¹ Notably, as utilities confront rapidly increasing load growth, capital allocation priorities are also shifting toward greater investment in power generation.³² Hyperscalers themselves are also channeling electricity procurement towards an all of the above approach to meet their energy needs in the coming decade—from natural gas paired with carbon capture,³³ to nuclear,³⁴ geothermal,³⁵ renewables³⁶ and grid-scale battery storage.³⁷

Under these conditions, states and localities that can move quickly to authorize construction of new large-scale generation and storage capacity will be critical enablers of industrial and AI-driven investment. DOE can play a crucial role in helping states deliver on both fronts by establishing a dedicated “one-stop shop” offering a combination of technical assistance, convening support, and mapping tools, all in service of timely siting and permitting actions. This would support large-scale generation and storage deployment for meeting load growth, and could also encompass transmission infrastructure such as generation interconnection facilities or reconductoring initiatives discussed above. Such a program could be housed within DOE or at a national lab, depending on staffing and budgetary considerations.

Recommendation: DOE should provide technical assistance for updating state and local ordinances, permitting processes, and regulations (3.a.ii, 3.a.iv).

Targeted assistance from DOE can support state and local governments seeking to modernize siting and permitting processes with a goal of enabling timely project deployment. For example,

³⁰ [Distributed Energy Systems Demonstrations Program](#), U.S. Department of Energy (n.d.).

³¹ [Strengthening America’s Energy Infrastructure](#), Edison Electric Institute (n.d.).

³² [Investor-Owned Utilities to Spend \\$1.1T in Grid Boost as Power Demand Spirals](#), POWER (October 9, 2025).

³³ [Google backs US gas power plant with carbon capture for Midwest data centers](#), Reuters (October 23, 2025).

³⁴ [Our first advanced nuclear reactor project with Kairos Power and TVA](#), Google (August 18, 2025).

³⁵ [NV Energy seeks new tariff to supply Google with 24/7 power from Fervo geothermal plant](#), UtilityDive (June 21, 2024).

³⁶ [Meta Buys 100% of Renewable Energy from New \\$900 Million Solar Project to Power U.S. Data Centers](#), ESG Today (July 23, 2025).

³⁷ [Aligned and Calibrant to Deploy First-of-its-Kind On-Site Battery Storage Project to Unlock Utility Power for Data Centers](#), Aligned Data Centers (October 22, 2025).

this could include voucher opportunities to update local ordinances, state permitting processes, and existing regulations that slow project deployment,³⁸ or technical assistance partnerships to provide regulators and affected stakeholders with objective, unbiased expertise.³⁹

Recommendation: DOE should establish peer-to-peer exchange and cohort-based learning models for states (3.v).

DOE can convene cohorts of states through Partnership Intermediary Agreement-enabled programming⁴⁰ to regularly share best practices and troubleshoot permitting and siting challenges, including adaptation of models and best practices from leading states, such as Indiana's Energy Ready Communities program.⁴¹

Recommendation: DOE should provide tools to help states identify and compare relevant factors for siting decisions (3.a.ii).

DOE can provide tools to help states target outreach to communities, and identify optimal sites for large-scale generation and storage project development, drawing on models like Oregon's siting atlas⁴² or the Office of Nuclear's Siting Tool for Advanced Nuclear Development initiative.⁴³ Guidance or analytic tools to overlay Opportunity Zone tracts with data on transmission capacity, land availability, and other factors could also help identify where new energy projects could anchor broader economic development in rural areas, anticipating growth from AI.⁴⁴

E. Overlapping Considerations and Congressional Requests.

DOE can further advance speed to power by integrating and optimizing its existing authorities, and/or by seeking targeted Congressional and Executive support to expand the utility, capacity, and flexibility of its transmission programs.

Recommendation: DOE should layer programs to minimize new permitting requirements (3.c).

DOE should offer suites of benefits (or layered incentives) for projects to support faster design and implementation while minimizing duplication of efforts and permitting delays. For example,

³⁸ E.g., [Voucher Opportunity 3 \(Recipients\) - Clean Energy Demonstration Project Siting/Permitting Support](#), U.S. Department of Energy (n.d.).

³⁹ E.g., [UW SER Project Selected for Funding Under DOE Regional Carbon Management Initiative](#), University of Wyoming (August 14, 2024).

⁴⁰ E.g., [Reliable Energy Siting through Technical Engagement and Planning](#), U.S. Department of Energy (n.d.).

⁴¹ [Solar and Wind Energy Ready Community Certification](#), Indiana Office of Energy Development (n.d.).

⁴² E.g., [Oregon Renewable Energy Siting Assessment](#), Oregon Department of Energy (n.d.).

⁴³ E.g., [Siting Tool for Advanced Nuclear Development \(STAND\)](#), National Reactor Innovation Center (n.d.).

⁴⁴ E.g., [The Qualified Opportunity Zone Program and Clean Energy: A New Era for Natural Gas, Solar, Wind, Energy Storage and Nuclear Projects](#), Dentons (September 4, 2025). The extension of the Opportunity Zones tax credit under the One Big Beautiful Bill Act of 2025 could be attractive to project developers looking to build new power plants or renewables in states and localities with favorable energy policies.

DOE's entry into a capacity contract under TFP is a form of financial assistance that is not considered a Major Federal Action for which environmental review is required under NEPA.⁴⁵ DOE could pair TFP proposals with technical assistance for power flow analysis, project design, or transmission planning expertise, to allow for minimal permitting delays and faster execution.

Recommendation: DOE should bundle tools strategically, and avoid 3Ps where the complexities of a federal partnership aren't clearly outweighed by the beneficial tools provided (3.h).

Except where specifically noted above under Section B for dealing with supply chain constraints, DOE should avoid the use of 3Ps for reconductoring or seams projects, if possible. DOE has sufficient authority and funding to provide flexible and responsive support to a variety of projects without the additional administrative burden of a 3P unless an eminent domain authority is needed. As described above, technical assistance, grants, and capacity contracts provide DOE the ability to work with entities to study, evaluate, design, coordinate review, and fund or finance projects without the complexities or contracting of a 3P. This flexibility will also allow DOE to fund more projects and support them along their unique development timelines and challenges, providing additional funding opportunities as needed and appropriate.

Recommendation: DOE should explicitly request Congressional support to optimize existing authorities and programs and increase appropriations (6).

Congressional support is essential to sustain and expand DOE's ability to deploy transmission and grid infrastructure at the pace needed to support load growth. DOE should consider requesting explicit increases and extensions of GRIP, State and Tribal Grid Resilience Formula Grants, TFP, and annual appropriations to support TAG. TransCanyon recently cancelled its TFP contract with DOE, providing an opportunity for DOE to recommit those funds, but more funding would support more projects. DOE should also request that Congress amend the TFP statute to allow a risk-based assessment of the contracts, which would allow DOE to enter into capacity contracts in excess of the \$2.5B allocated. DOE should also request that Congress exempt loans under the TFP program from NEPA, as they did with capacity contracts.

Congress can also explicitly authorize use of government-owned land for transmission siting.⁴⁶ In particular, some Department of Defense land holdings may be appropriate to site mission critical or otherwise sensitive grid infrastructure. This is echoed in the Trump Administration's recent AI Action Plan, which calls for "agencies with significant land portfolios to identify sites suited to large-scale development."⁴⁷ With additional support from Congress, DOE could further its existing effort⁴⁸ to utilize federal lands to support AI data center development.

⁴⁵ [42 U.S.C. 18713\(f\)\(7\)](#).

⁴⁶ [Unlocking HVDC: How Congress can enable a more resilient grid](#), Robin Allen and Rachel Levine, Niskanen Center, pp. 10 (July 2025).

⁴⁷ [America's AI Action Plan](#), The White House, pp. 15 (July 2025).

⁴⁸ [Request for Information on Artificial Intelligence Infrastructure on DOE Lands](#), U.S. Department of Energy, 90 FR 14972 (April 2025).

Recommendation: DOE should support executive coordination on transmission deployment (6).

Broader action to coordinate federal support for transmission deployment will be critical to achieving speed to power. DOE should encourage coordinated federal support for transmission deployment, in particular, through the use of the existing Coordinated Interagency Transmission Authorizations and Permits Program.

Recommendation: DOE should continue to deepen its use of AI tools in service of speed-to-power. (6)

DOE's Artificial Intelligence Strategy⁴⁹ addresses AI applications to operational activities, building an AI-ready departmental workforce, and an expanding array of AI use cases for fulfilling its energy missions. This strong framework positions DOE well for leveraging AI towards speed-to-power. An enhanced strategic emphasis on grid-related AI use cases could support many of our recommendations, in particular, (1) streamlining processes and project management related to financial award administration and procurement activities, and (2) technical assistance for activities such as power grid modeling, siting analysis tools, and permitting guidance.

III. Conclusion

Thank you for the opportunity to submit this response. We look forward to continuing to work with DOE and others on opportunities to address grid constraints and accelerate speed to power.

Sincerely,

/s/ *Liza Reed*

/s/ *Joseph Majkut*

/s/ *Leslie Abrahams*

Liza Reed
Niskanen Center
1201 New York Ave. NW,
Suite 200B
Washington, D.C. 20005
614-578-5328
lreed@niskanencenter.org

Joseph Majkut
Center for Strategic &
International Studies
1616 Rhode Island Ave, NW
Washington, DC 20036
202-775-7317
jmajkut@csis.org

Leslie Abrahams
Center for Strategic &
International Studies
1616 Rhode Island Ave, NW
Washington, DC 20036
202-775-7317
labrahams@csis.org

⁴⁹ [Artificial Intelligence Strategy](#), U.S. Department of Energy (October 2025).